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The dynamics of an impact system of two concentric hollow cylinders with
a clearance is investigated by using a continuous model and the theory of wave
propagation. Exact solutions are obtained by the expansion of the transient wave
function in a series of eigenfunctions, and their numerical results are presented by
selecting a suitable number of truncation terms of eigenfunctions. The e!ect of
multiple impact is considered. The impact clusters sensitive to the time step length,
truncation terms of eigenfunctions and system parameters, are studied in
comparison to single impacts. Two evolving ways of impact clusters are observed.
The impact responses, frequency spectra and reconstructed phase portraits
demonstrate complicated motions including quasi-periodic and chaotic motions,
two routes to chaos through two-frequency quasi-periodicity and intermittency,
phase locking and the low-dimensional behavior of the system. This investigation
also veri"es the validity of the simpli"ed models for describing impact systems.
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1. INTRODUCTION

In mechanisms and machines, impact oscillations result from components
impacting each other due to the clearances of these mechanical systems. Impact
vibration is of interest in a wide variety of engineering applications. The simpli"ed
models commonly used have been developed, based on Newton's law and impact
law (Newton's law of restitution). The complicated vibro-impact responses show
non-linear characterization in these models [1}5]. Periodic, subharmonic and
low-dimensional chaotic motions have been found.

At least two questions arise when the simpli"ed models are applied. One is the
in"nite degrees of freedom of continuous impacting bodies. The equation for
solving the impact response should be a partial di!erential equation. Its phase
space is in"nite. Does such an in"nite-dimensional system behave as
a low-dimensional system or exhibit low-dimensional attractors? The other is due
to the existence of multiple sub-impacts in#uence the dynamics of the system? Only
a few studies of multiple sub-impacts have been conducted. Mason [6] showed that
an impact that appeared single to the naked eye consisted in reality of several
impacts in quick succession. These impacts can be called sub-impacts, which form
an impact cluster. Stoianovici and Hurmuzlu [7] conducted an experiment of freely
0022-460X/99/500995#21 $30.00/0 ( 1999 Academic Press
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dropped bars on a large external surface. The authors detected sub-impacts in
a drop, checked Mason's notation and showed that the multiple sub-impacts
caused the variation of the coe$cient of restitution. Goldsmith [8] and Yigit et al.
[9] have also made some remarks on multiple sub-impacts.

The problem of multiple sub-impacts is usually concerned with the continuous
modes and transient deformations, and encounters serious di$culties in the
mathematical treatment. However, two studies have been made for two simple
impact systems by using the continuous models and considering the transient
deformations [10, 11]. One system consists of two concentric hollow cylinders with
a zero clearance in our previous work [10]. The other consists of a thin beam
impacting against a stop [11]. The two studies gave some numerical results of
impact forces and responses.

The present paper considers an axially symmetric plain strain problem for an
impact system with a small non-zero clearance. The system (Figure 1) consists of
two in"nite, coaxial, hollow, circular, elastic cylinders. The two hollow cylinders
initially at rest have perfectly smooth surfaces and same materials. There is a small
clearance D between them. The interior hollow cylinder is subjected to an interior
pressure p

1
(t) uniformly distributed along the axis. Once the dilation of the interior

hollow cylinder grows to be equal to the value of the clearance, the interior hollow
cylinder will start impacting against the outer hollow cylinder. Figure 1 is an
idealization of the behaviour of a tube at a guide tube or a bushing. A liquid or a gas
#ows in the tube. The applied pressure p

1
(t) depends on the #ow velocity.

Sometimes the operations of opening and closing the system may cause impulsive
pressure. High pressure may also be generated by explosive gas. The impact
response of such an ordinary mechanical system is important in high-integrity
designs. The dynamics of the impact system can be studied by the use of the
continuous model and theory of wave propagation. Exact solutions and their
numerical results can be obtained, showing multiple sub-impacts clearly. It
provides us with a good example to study the e!ect of multiple sub-impacts on the
dynamics of impact systems.

In this paper, the theory of wave propagation is applied. The corresponding
partial di!erential equations are derived. Exact solutions are obtained by the
expansion of the transient wave function in a series of eigenfunctions. Numerical
results are presented by selecting 100}200 terms of eigenfunctions. A certain
multiple impact phenomenon called the clustering phenomenon is examined, where
Figure 1. Geometry of the system with two hollow cylinders (initial state).
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several single impacts take place closely together to form an impact cluster. The
impact clusters are less sensitive to calculating errors than the single impacts. They
may grow either regularly or irregularly. Two evolving ways are found. The
dynamic behavior of the system is studied by impact responses, frequency spectra
and reconstructed phase portraits. The investigation demonstrates the
low-dimensional behavior of the system. The validity of the simpli"ed models is
discussed as well.

2. MATHEMATICAL FORMULATION

The sizes of the two hollow cylinders are shown in Figure 1. The interior hollow
cylinder has inner and outer radii a

1
and b

1
respectively, and the outer hollow

cylinder has inner and outer radii a
2

and b
2

respectively. The clearance D is much
smaller than radius b

1
. The two hollow cylinders have the same Lame's constants

j"k"80 GPa, and longitudinal velocity C"5000 m/s. To simulate impulsive
pressure. p

1
(t) is supposed to be an exponentially decaying, interior pressure

p
1
(t)"p

0
eatH(t), (1)

where p
0

is the amplitude of the pressure, a is the decaying factor, t is the time
variable, and H(t) is Heaviside step function, a"0 may represent a sharp change of
the pressure perhaps due to a suddenly opening or closing the system.

The impact and separation conditions of the two hollow cylinders are required in
the analysis. The initial impact occurs once the dilation of the interior hollow
cylinder has "rst grown to be equal to the value of the clearance. If u(r, t) denotes
the radial displacement, the initial impact condition can be written as
u(r, t) Dr"b

1
!D"0, by which the "rst impact time can be determined. The general

impact condition is similar and expressed as equation (2). In equation (2),
D;"u(r, t) Dr"a

2
!u(r, t) Dr"b

1
is the relative radial displacement of the two

interfaces: the inner boundary surface of the outer hollow cylinder and the outer
boundary surface of the interior hollow cylinder. A term of !D is added to
consider non-zero clearance, which is di!erent from the impact condition in
reference [10]. During impacting, the two hollow cylinders are in contact and
generate interface impact pressure. At the end of an impact, the interface impact
pressure becomes zero and a separation of the two hollow cylinders will start. If
p
2
(t) denotes the interface impact pressure, the separation condition can be

expressed as equation (3), by which the separation time can be determined. Similar
impact and separation conditions were applied recently to improve the contact and
non-contact criterion in the model of vibration absorbers [12]:

D;!D"0,
d(D;)

dt
*0, (2)

p
2
(r)"0,

dp
2
(t)

dt
*0, (3)
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During impacting, the interior hollow cylinder is subjected to p
1
(t) and p

2
(t), and

the outer hollow cylinder is subjected to p
2
(t). During separating, the interior

hollow cylinder is subjected to p
1
(t). No force is applied on the outer hollow

cylinder, but the inside deformation waves remain propagating. The equations of
motion, boundary conditions and initial conditions are expressed as follows:

(1) In the state before the ,rst impact:

L2u(r, t)
L2r

#

1
r

Lu(r, t)
Lr

!

u(r, t)
r2

"

1
C2

L2u(r, t)
L2t
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1
)r)b

1
, t

1
)t)t~

2
,

p
r
(r, t) Dr"a

1
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1
(t), p
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(r, t) Dr"b

1
"0,

u
0
(r)"u(r, t) Dt"t

1
"0, v

0
(r)"

Lu(r, t)
Lt Kt"t

1

"0,

t
1
"0, (4a)

where the moment of beginning the "rst impact t
2

is determined by equation (2),
t~
2

is the time immediately before t
2
, u

0
(r) and v

0
(r) are the initial radial

displacement and radial velocity "elds at time t
1
respectively. In this state, the outer

hollow cylinder is still at rest.
(2) In an impact state:

L2u(r, t)
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)t)t~

2m`1
,

p
r
(r, t) Dr"a

1
"!p

1
(t), p

r
(r, t) Dr"b

1
"!p

2
(t),

u
0
(r)"u (r, t) Dt"t~

2m
, v

0
(r)"

Lu(r, t)
Lt Kt"t~

2m

, (4b)
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(4c)

and and additional continuity condition

D;"u(r, t) Dr"a
2
!u(b

1
, t) Dr"b

1
"D, (4d)

where m is the number of impacts, m"1, 2,2, t
2m

denotes the moment of
beginning the mth impact, and the moment of terminating the mth impact or
beginning of the mth separation t

2m`1
is determined by equation (3).
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(3) In a separation state:

L2u(r, t)
L2r

#
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, (4f )

where the moment of beginning the (m#1)th impact t
2m`2

(t
2(m`1)

) is determined
by equation (2).

Because the dynamic response of the system is governed by two sets of equations,
the exact solutions need to be solved by treating the separation and impact cases
separately.

In a separation state, the two hollow cylinders can be considered separately. The
solution of a single hollow cylinder subjected to interior and outer pressures can be
applied. For a single hollow cylinder with inner radius a and outer radius b, where
the inner boundary surface is subjected to an interior pressure p*

1
(t) and the outer

boundary surface is subjected to an outer pressure p*
2
(t), the expansion theorem

states that the general solution [13}15] can be expressed as

u(r, t)"u
s
(r, t)#

N
+

m/1

;
m
(r)q

m
(t), (5)

where the quasi-static radial displacement u
s
(r, t) satis"es inhomogeneous

boundary conditions, the eigenfunctions ;
m
(r) satisfy homogeneous boundary

conditions, q
m
(t) are the unknown time functions, and N represents the number of

truncation terms:

u
s
(r, t)"C

a2

2(j#k) (b2!a2)
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a2b2
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1
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1
(t)
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1
rD p*

2
(t), (6)
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where k
m

is the wave number of order m, u
m
"k )C is the natural frequency

obtained from the frequency equation [10], J
1
and>

1
are the Bessel functions of the

"rst and second kind of the "rst order, respectively, and the factor A
m

is determined
by the normalization condition [13, 10]. It is convenient for considering di!erent
separation states by introducing a new time variable t* to denote the beginning of
a separation. Then the improvement of q

m
(t) [10] is

q
m
(t)"q

m
(0) cosu

m
(t!t*)#

1
u

m

q
m
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m
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#

1
u

m
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O
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m
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Q
m
(t)"!2nP

b

a

u
s
(r, t);

m
(r)rdr,

q
m
(0)"2n P

b

a

u
0
(r);

m
(r) r dr#Q

m
(t*),

q
m
(0)"2n P

b

a

v
0
(r);

m
(r) r dr#QQ

m
(t*).

Therefore, from equations (5)}(8), u(r, t) can be expressed as a function

u(r, t)";(r, t, t*, C, j,k, a, b, u
0
(r), v

0
(r), p*

1
(t), p*

2
(t)) (9)

and the radial velocity v (r, t) is

v(r, t)"
L;
Lt

(r, t, t*,C, j,k, a, b, u
0
(r), v

0
(r), p*

1
(t), p*

2
(t)). (10)
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Hence, during the state before the "rst impact, the solution is
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and during the mth separation, the solution is
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In an impact site, the solutions cannot be obtained directly because of the
unknown interface impact pressure p

2
(t), but some simpli"cation has been applied

in the impact system consisting of two hollow cylinders with zero clearance in our
previous work [10]. When two hollow cylinders with zero clearance are in contact,
it has been proved that the system has the same natural frequencies and solutions as
a single hollow cylinder: an assumed total hollow cylinder with inner radius a

1
and

outer radius b
2
subjected to the interior pressure p

1
(t). In this paper, if the clearance

is much smaller than radius b
1
, the simpli"cation can be applied approximately,

but the di!erent continuity condition (4d) results in a di!erent solution of u
s
(r, t):
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Function (9) should be improved by adding the parameter D, so as to express u(r, t)
in an impact state

u (r, t)";
1
(r, t, t*, C, j,k, a, b,D, u

0
(r), v

0
(r), p*

1
(t), p*

2
(t)). (14)

The process of solving function (14) is similar to that of solving function (9). Thus,
during the mth impact, the solution is
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1
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a
1
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2
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)t)t~

2m`1
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and the interface impact pressure p
2
(t) can be obtained readily:

p
2
(t)"!p

r
(r, t) Dr"b

1
"!C(j#k)

Lu(r, t)
Lr

#j
u(r, t)

r D
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, (16)

where p
r
(r, t) is the radial stress component.

From equations (11), (15) and (12), a sequence of solutions in the time domain can
be obtained.

For small clearance, it can be proved easily that u(r, t)/p
0

is unchanged
with constant D/p

0
. Hence some equivalent parameters D

e
"D]1012/p

0
,

P
2e

(t)"p
2
(t)/p

0
and ;

e
(r, t)"u(r, t)]1012/p

0
are introduced. In this paper,

;
e
(r, t) Dr"b1 by ;

e1
(t), and ;

e
(r, t) Dr"a

2
by ;

e2
(t) are represented. In addition, if not

speci"ed, N and n in terms of time-step length ((b
2
!a

1
)/C)/(1/n) are 200 and 100

respectively.

3. THE CLUSTERING PHENOMENON

The impact response is related to impacts. In Figure 2, the three curves of P
2e

(t),
;
e1

(t)!D and ;
e2

(t) show the impact conditions and the relationships between
them. The impact response may be periodic (Figure 2(a)) and non-periodic (Figure
2(d)). When apparently continuous impacts as shown in Figure 2(a) take place, the
two curves of ;

el
(t)!D and ;

e2
(t) are almost the same and cannot be identi"ed in

low-resolution power. The two hollow cylinders behave like one. In other cases, the
two interfaces, both the inner boundary surface of the outer hollow cylinder and the
outer boundary surface of the interior hollow cylinder may oscillate in either
similar or di!erent ways.

More than 100 impacts take place during the considered time interval in each
case in Figure 2. They are called multiple impacts [10] to distinguish them from the
problem of single impact in the classical impact theory. Impacts may appear
continuous (see Figure 2(a)), regular (see Figure 2(b)) and irregular (Figure 2(d)) as
the system parameters vary.

The history of p
2
(t) in Figure 2(c) illustrates 24 impact clusters. Each impact

cluster may consist of several sub-impacts. Figure 3 enlarges the 21st impact cluster



Figure 2. Sample plots of P
2e

(t) (bottom),;
e1

(t)!D (middle) and;
e2

(t) (top): (a) and (b) a
1
"0)2 m,

b
1
"0)3 m, b

2
"0)4 m, D

e
"0, (c) and (d) a

1
"0)2 m, b

2
"0)6 m, a"0, D

e
"0)5 m3/N, N"150.

Figure 3. Enlargement of the 21st impact cluster in Figure 2(c).
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that consists of 15 sub-impacts. This phenomenon, in which several single impacts
take place closely together to form an impact cluster, was called the &&group''
phenomenon [10]. It may also be called the clustering phenomenon visually. In
Figure 2(a), the clusters connect with neighboring clusters, but the impact clusters
can be identi"ed. In Figures 2(b), (c), the clustering phenomenon is clear. In Figure
2(d), the clustering phenomenon is unclear, but the impact clusters can also be
identi"ed in some time intervals, where some impact clusters may consist of only
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one or two single impacts. In Figure 2, the two interfaces seem to oscillate in
response to the impact clusters, and not to the single impacts. The clustering
phenomenon seems to be an inherent phenomenon in impact systems.

When the clustering phenomenon occurs, the impact cluster may be considered
as an output of the system. It has di!erent properties from the single impact. Let
N
c

denote the number of impact clusters, and N
i

denote the number of single
impacts. Figure 4 shows an interesting comparison, where N

i
varies greatly, but

N
c
is nearly unchanged with N and n.

Because the time-step length is chosen to be ((b
2
!a

1
)/C)/(1/n), a larger n can

detect shorter and slighter sub-impacts. However, N
i
will not approach a constant

until a very short time-step length with n"500. In equation (5), each eigenfunction
includes a natural frequency considered. For N"1, only the "rst natural
frequency, i.e. the base frequency is considered. The treatment may be very similar
to that of a simpli"ed model in which an impact body is represented by a mass
attached to a spring. In this case, the solution does not consider the wave e!ects,
and is a vibro-solution. As a larger N is selected and more natural frequencies are
considered, one may expect a good detection of sub-impacts. However, the results
were unsatisfactory. As shown in Figure 4(b), the values of N

i
for N"180 and 200

still have a large di!erence. It seems to be very di!erent from the numerical results
of the dynamics of a single hollow cylinder [14], where N"25 is su$cient.
Fortunately, N

c
is not so sensitive to n and N. For N*50 and n*10, we have

checked the time histories of P
2e

(t), ;
e1

(t) and ;
e2

(t). The variations with N and
n are small for steady state responses. This is why n"100 and N"200 are selected
in the present paper.

The impact cluster is less sensitive to calculating errors. We may expect that it is
also less sensitive to system parameters that to the single impact. It is veri"ed by
a comparison between N

c
and N

i
as shown in Figure 5. N

i
varies sharply even on

much smaller scales. In Figure 5(a), the two small graphs amplify the small windows
Figure 4. Variations of N
c

and N
i
: a

1
"0)2m, b

1
"0)4m, b

2
"0)6m, a"0, D

e
"0)5 m3/N.

(a) *d* N
i
; 2r* N

c
. (b) *d* N

i
; *r* N

c
.



Figure 5. Variations of N
c
and N

i
with D

e
: a

1
"0.2 m, b

1
"0)4m, b

2
"0)6m, a"0.
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region in the graphs, below which show the variation of N
i
to be rather random.

A very small di!erence in the system parameter may cause a sharp variation in N
i
.

However, N
c
has a much lower level of variation as shown in Figure 5(b). It varies

slowly before D
e
"0)6 m3/N, and either slowly or more quickly later on. The

di!erence between N"200 and 50 is examined which is small. A jump at
D
e
"0)6 m3/N is due to the cluster splitting and the method of counting N

c
, which

will be discussed later. In more sharply varying regions D
e
"0)6 m3/N&0)8 m3/N

and D
e
"1)8 m3/N&2)4 m3/N, the behaviour of the system will change appreciably.

If another system parameter a is changed, the same results can be obtained.
Because the impact cluster and single impact have very di!erent properties, two

questions are to be answered: why the impact cluster grows so steadily with n and
N, and whether the impact response has the same sensitivity as the impact cluster.
As an interpretation of the "rst question, the time histories of the interface impact
pressure for N"1, 2 and 200 are shown in Figure 6. They have similar structures.
The structure for N"2 is analogous to that for N"200 even regarding the details.
Hence, it is not necessary to detect impact clusters by selecting a larger n and N.

The graphs in Figure 2 may shed some light on the second question, where the
two interfaces oscillate perhaps mainly in correspondence with the growth of
impact clusters. Being less sensitive to wave e!ects than stresses, the impact
oscillating will have less sensitivity than even the impact cluster. There is no need to
vary N and n to check the sensitivity of the steady state response; only checking the
unsteady state response will be su$cient. Figure 7 is an example. For
D
e
"1)9 m3/N, the response is chaotic (analyzed in next section). Although the

divergence of responses for di!erent N grows and will become large, for N"50,
100 and 200 their spectra are similar. The essential features of the impact system in
the frequency domain hardly change with small calculating errors.



Figure 6. Graphs of P
2e

(t) when N"1, 2 and 200: a
1
"0)2m, b

1
"0)4m, b

2
"0)6m, a"0,

D
e
"0)1 m3/N.
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Moreover, by comparing the level of white noise in Figure 7, a criterion of
selecting N may be obtained. A white noise occurs after a frequency of 3000/s when
N"50 and 100. It occurs in reality throughout the frequency domain, but does not
occur when N"200. Hence, the measurement of the level of white noise caused by
the truncation error may serve as a criterion to select N.

In the simpli"ed models, an impacting body is usually modelled as a mass
attached to a spring. Only the base frequency mode is considered. The treatment of
choosing N"1 in equation (5) for the present impact system is similar to that of the
simpli"ed models. In Figure 6, the similar structures of P

2e
(t) for N"1, 2 and 200

may show some validity of the simpli"ed models. The main reason for the validity
of the simpli"ed models is that the base frequency usually occupies most parts of
the energy of oscillations. In this case, the base frequency dominates the main
impact clusters, the clustering phenomenon may occur and the simpli"ed models
may be somewhat valid in uncovering the essential features of the impact system.

The occurrence of the clustering phenomenon should be related to the
quasi-static behavior of the impact system. According to the impact condition, the
relative radial displacement of the two interfaces dominates the generation of
impacts. The impact cluster and response interact with each other and cause
complicated motions. Figure 6 shows that the oscillation at the base frequency
dominates the pro"le of the impact cluster, and the oscillations at higher
frequencies dominate sub-impacts. The occurrence of the clustering phenomenon is
related to the wave e!ects because impacts usually accompanying the wave
phenomenon. When the changes of the oscillations due to waves are smaller than
the general levels of oscillations, the system behaves quasi-statically. The additional
sub-impacts generated by high-frequency oscillations will concentrate on some



Figure 7. Frequency spectra: a
1
"0)2m, b

1
"0)4m, b

2
"0)6m, a"0, D

e
"0)1 m3/N.
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time intervals that are dominated by the base frequency, and form the impact
clusters as shown in Figure 6 when when N"200. The clustering phenomenon will
occur clearly. In this case, the simpli"ed models may have some validity. In Figure
6, N"1 may represent a simpli"ed model with more degrees of freedom. One
might note that in Figure 2 the clustering phenomenon is clear if the two interfaces
oscillate quasi-statically.

If the changes of the oscillation due to the waves are considerable in comparison
to the general levels of oscillations, high frequencies with more energy are excited.
The system does not behave quasi-statically. More sub-impacts splitting from the
main impact clusters will "ll the left time intervals more irregularly as shown in
Figure 2(d). Then the clustering phenomenon is unclear.

However, when the simpli"ed model is applied, it is necessary to choose as many
more degrees of freedom as possible. An improvement of the impact law with zero
contact time should also be made. Otherwise the model will fail to apply to the case
even for the continuous impacts as shown in Figure 2(a).

Because the impact response depends on the impact cluster, it will depend on the
evolution of the impact cluster. Two evolving ways have been found: splitting and
discontinuous bifurcation. Figure 2 gives us the insight to discover the evolving way
of splitting. As the parameters increase, the impact clusters are thinned and then
split into sub-clusters (usually split into two sub-clusters "rst). Comparing the
distributions of P

2e
(t) between N"2 and 200 in Figure 6, the splitting is due to high

natural frequencies. Two main sub-clusters are mainly due to the second natural
frequency. The splitting is unavoidable.



Figure 8. Evolution of the impact cluster and response: a
1
"0)2 m, b

1
"0)4m, b

2
"0)6m, a"0.
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The splitting way may be subtle. In the system with the parameters given in
Figures 5 and 8, the splitting takes place early, but when near D

e
"0)6 m3/N, the

hyper-harmonic oscillation becomes strong. Sub-clusters are counted only after
D
e
"0)6 m3/N, so that a jump in Figure 5(b) occurs. As the system evolves, the

number of single impacts in an impact cluster decreases. The impact cluster
becomes more sensitive. When the impact cluster comprises only one or two single
impacts, for instance, at D

e
"1)9 m3/N, it will be as sensitive as the single impact.

This is why N
c
varies sharply after D

e
"0)6 m3/N and becomes almost the same as

N
i
after D

e
"1)8 m3/N.

Figure 8 also shows the discontinuous evolution. Initially, impact clusters
become thinner and then some clusters begin to vanish. The discontinuity may
occur suddenly. This evolving way usually accompanies the splitting of clusters.
The evolution of the impact cluster is the precursor of the evolution of the system.

4. NON-LINEAR IMPACT RESPONSE

To consider multiple sub-impacts, the impact response is investigated by the use
of the continuous model and theory of wave propagation. The system is described
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by a partial di!erential (equation (4)) whose phase space is in"nite dimension.
Hundreds of impacts take place within the considering time intervals. The applied
force p

1
(t) is a continuously non-period load. Under these conditions, the impact

response of the system is more complicated. Even for the apparently
regular response as in Figure 8 at D

e
"0)1 m3/N, the phase portrait

(displacement}velocity) is complicated and random looking (see Figure 9). In
contrast to the present treatment, the simpli"ed models have a well-de"ned "nite
number of degrees of freedom and have shown periodic, non-periodic and
low-dimensional chaotic motions [1}5].

In this paper, the evolution of the system will be investigated by observing
the time history of oscillation, the frequency spectrum, and the phase portrait
in reconstructed phase space. The system parameters: a

1
"0)2 m, b

1
"0)4 m,

b
2
"0)6 m, a"0, are chosen, and the clearance D

e
is varied. The time history

of ;
e2

(t) and P
2e

(t) are shown in Figure 8. The impact clusters evolve in a
combined way of splitting and discontinuity. The clustering phenomenon is
clear.

Some of the frequency spectra are selected and shown in Figure 10. A route of
two-frequency quasi-periodicity to chaos is found. The basic path is periodicP
quasi-periodicPchaotic. It is very similar to the experimental observation in
reference [16]. Phase locking is also observed. The observations are described in
detail by numerical experiments as follows.

Before D
e
"0)5 m3/N, a spectral peak appears at a frequency labeled f

1
. It is

a periodic state with a single spectral peak (Figure 10(a)) and its harmonics (Figure
8). The decaying spectral curve at the beginning is due to quasi-static radial
displacement u

s
(r, t).

At D
e
"0)5 m3/N, a doubling frequency 2 f

1
appears. It is clearer at

D
e
"0)6 m3/N (Figure 10(b)). It is another basic frequency labelled f

2
. The spectrum

of D
e
"0)6 m3/N demonstrates a precursor of a line combination of two basic

frequencies in the form f
3
"f

2
!f

1
. Then the quasi-periodic state with two
Figure 9. Phase portrait: a
1
"0)2m, b

1
"0)4m, b

2
"0)6m, a"0, D

e
"0)1 m3/N.



Figure 10. Frequency spectra.
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incommensurate frequencies f
1

and f
2

appears. f
3

can be found just splitting from f
1
.

As D
e
increases, the separation of f

3
from f

1
increases and the amplitudes of f

1
and

f
2
decreases. Other linear combinations can also occur, such as f

1
#f

2
, f

1
#2 f

2
, 2 f

2
and 3 f

2
, but their peaks are very low. The ratio f

2
/ f

1
decreases smoothly from 2 to

a step 8
5

as D
e
increases. The step is reached at D

e
"1)5 m3/N, but a spectral peak at

a frequency f
L
"f

2
/8"f

1
/5 does not occur. The phase locking and the linear

combination of two basic frequencies f
1

and f
2

show strongly non-linear
characterization in the system.

At D
e
"1)9 m3/N, continuous range of frequencies appears, indicating

non-periodic motion.
For small clearances, the two hollow cylinders behave like one. For larger

clearances, very few impacts take place and the two hollow cylinder eventually
oscillate periodically but at their own natural frequencies. Between these two
extreme states the two hollow cylinders interact in a strongly non-linear way.

The transition from two-frequency quasi-periodicity o chaos is less understood
[17], but it is desirable to "nd out at least the origins of f

1
and f

2
.

Three base frequencies for the analysis are suggested. They are f
o
"1523 Hz for

the outer hollow cylinder, f
1
"2609 Hz for the interior hollow cylinder, and

f
T
"2052 Hz for the assumed total hollow cylinder. f

1
approaches f

T
as

D
e
decreases, but seems to be never equal to f

T
. A di!erence exists even at D

e
"0

when the continuous impacts occur. The reason is that the two interfaces cannot
bear the tensile stress. f

1
approaches f

o
as D

e
increases. If only a single impact takes

place, f
1

will be equal to f
o
. It is observed that in reality f

1
is located between two

base frequencies f and f .

T o
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The linewidth of the spectral peak of f
1

is about 280 Hz (5)7 per cent of f
1
) at

D
e
"0)1 m3/N. It is so wide that the spectrum looks like a continuous spectrum

plotted on a logarithmic vertical scale.
If the frequency spectrum of a single hollow cylinder is calculated, such as the

assumed total hollow cylinder subjected to p
1
(t), three sharp peaks at the "rst three

natural frequencies can be observed, where the ratio, "rst peak value/second peak
value, is about 1/3. A sharp peak appears at a frequency 12 745 Hz (not shown) in
the present system, due to the second natural frequency 12 739 Hz of the assumed
total hollow cylinder. This frequency is unchanged with the clearance, but its peak
value is very small. It is about 5)6% of the "rst peak of f

1
"1981 Hz at

D
e
"0)6 m3/N. The impacts seem to force the impact system to be in response to

lower frequencies among which more energy is distributed.
One might note that in Figure 8, the sub-clusters split from main impact clusters

at D
e
"0)6 m3/N, and are distributed uniformly within a long time interval. The

spectral peak of f
2

is visible. It is 3869 Hz, while f
1

is 1981 Hz. f
2
is just the double of

f
1
. Its peak is even higher than that of f

1
for the interface of the interior hollow

cylinder. The spectra of the interface of the interior hollow cylinder (not shown)
demonstrate that f

2
evolves from f

1
.

The beginning of f
2

perhaps is related to the splitting of impact clusters, while the
splitting is due to higher frequency models as shown in Figure 6. The simpli"ed
model, representing an impact body by a mass and a linear spring, will fail to detect
this splitting and "nd the route of two-frequency quasi-periodicity to chaos.

It is known that the interface of the outer hollow cylinder will eventually oscillate
periodically as D

e
increases. If the situation is reversed, a new route to chaos,

intermittency, is observed. Figure 11 shows a transition to chaos through
Figure 11. Presence of intermittency.
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intermittency. After the clearance is changed near 2)725 m3/N, more regular
periodic oscillations are interrupted abruptly by bursts. As the clearance decreases,
the bursts occur more frequently, and the behavior becomes more chaotic.

According to the time series, Fourier spectra and routes to chaos, the
present impact system behaves like a low-dimensional system. A few of the
low frequencies are excited. It means a few degrees of freedom perhaps can describe
the system. To further verify this idea, the phase space of the system is reconstructed
from the observable ;

e2
(t). Choosing a 3-D embedding space and the delay

time q"0)0864 ms, three co-ordinates are =
1
";

e2
(t), =

2
";

e2
(t#q)

and =
3
";

e2
(t#2q). Figure 12 shows the presence of the reconstructed

attractors.
Figure 12(a) is a period looking trajectory. After a rotation, a narrow band is

shown in Figure 13(a). The trajectory rotating around the torus is due to the
existence of another higher frequency 12 745 Hz. As the clearance exceeds 0)5 m3/N,
the torus begins to deform and warp, but the period looking trajectory exists till
D
e
"0)599 m3/N. After D

e
"0)6 m3/N, more complicated trajectories appear as

shown in Figure 12(b)}(d). By rotating axes, Figure 13 shows that the bands widen
with the clearance. However, these bands which are not so broad show that the
low-dimensional attractors may describe the system.

The existence of the low-dimensional attractors is supported by the computation
of information dimension D

I
(see Figure 14). D

I
is computed by using 300 000

points. Before D
e
"1)0 m3/N, D

I
is about 2)0 and in agreement with the trajectory
Figure 12. Phase portrait in a 3-D embedding space.



Figure 13. Phase portrait after a rotation.
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rotating around a torus. Then the fractal dimension may show the presence of
a strange attractor and low-dimensional chaotic motions.

5. CONCLUSIONS AND DISCUSSIONS

Although the multiple-impact phenomenon, complicated motions and routes to
chaos discussed in the preceding sections are incomplete and not fully understood,
some conclusions from the analysis can be drawn.

The clustering phenomenon is an important feature of impact systems. Whether
it occurs is directly related to the validity of the simpli"ed models describing the
impact systems. The wave and quasi-static e!ects may determine if the clustering
phenomenon occurs. Because the main energy is usually distributed to the base
frequency of the oscillation of a structure, the clustering phenomenon seems to be
an inherent physical phenomenon. More stable impact clusters than single impacts
hold out a hope for the use of the simpli"ed models. However, if a simpli"ed model
is applied, there are many more degrees of freedom to be selected, and the impact
laws such as the Hertzian impact law instead of the classical impact law are used
with a non-zero contact time.

The calculation of the interface impact pressure allows us to uncover some
underlying rules. The evolution of impact clusters is connected to the evolution of
the impact system. Two evolving ways of impact clusters, splitting and
discontinuity bifurcation, are found. Two evolving ways of the system, from



Figure 14. Information dimension versus clearance.
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two-frequency quasi-periodicity and through the intermittency to chaos, are
observed. They may be two usual ways of the impact systems. Many complicated
motions, such as periodic, quasi-periodic, chaotic motions, etc. are observed. The
linear combination of two basic frequencies and phase locking are observed as well.
The time histories, frequency spectra, phase portraits in reconstructed phase space
and information dimension, show the system may exhibit the low-dimensional
behavior. The simpli"ed models may be somewhat valid in describing the essential
non-linear features of impact systems.

The present study indicates the importance of multiple impacts on impact
system, but is incomplete. Further studies are required to be done for the chaotic
dynamics of the impact systems.
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